SP Numbers Over Integer Layers

Raghavendra Bhat, Cristian Cobeli and Alexandru Zaharescu
Department of Mathematics, University of Illinois at Urbana-Champaign

ABSTRACT

Background
Let $\left.u=\left\{a_{k}\right\}\right\}>0$ be a sequence of non-negative integers.
Place the sequence on the top row of a triangle.
Obtain subsequent rows as sequences of numbers given by the absolute values of the differences between neighboring terms on the previous line.
a_{0}

Conjecture (Proth-Gilbreath)
All the differences on the western edge of the (P-G) triangle enerated by the sequence of all primes are equal to 1 .
So far, it is not even known if there are an infinite number of 1 's, We examine operator Υ that transforms the top sequence \mathfrak{u} into he one on the left edge \mathfrak{w} in the ($\mathrm{P}-\mathrm{G}$) triangle.
is defined by

$$
\Upsilon: \mathcal{L} \rightarrow \mathcal{L} \text { and } \Upsilon(\mathfrak{u}):=\mathfrak{w} .
$$

- Let $\Psi: \mathcal{L} \rightarrow \mathcal{L}$ be the operator that transforms a horizontal row of the triangle into the immediately following row.
- The entire triangle (P-G) is composed of the sequence of successive horizontal rows $\psi^{(j)}(\mathfrak{u})$, for $j \geq 0$, where $\psi^{(0)}(\mathfrak{u})=\mathfrak{u}$ is the top generating row.
- The restrictions of Ψ and Υ to \mathcal{L}_{0} have in their image only sequences in \mathcal{L}_{0}. Ex: \mathbb{F}_{2}

The same type of property occurs with the action of Ψ and on sequences \mathfrak{s} of 0 's and 1 's, except for a finite number of terms.
For these sequences, $\Psi(\mathfrak{s})$ is also ultimately composed only of 0 's and 1's, but this is not generally true for $\Upsilon(\mathfrak{s})$.
The geometric correspondent of each iteration of Υ applied on \mathfrak{u} results in the construction of a new equilateral triangle, rotated clockwise around the first component a_{0} of \mathfrak{u} by an angle of 60 degrees.
After six iterations of Υ, the initial sequence \mathfrak{u} is geometricall reached again.
This results in the completion of the first layer or level of what can further be seen as a helicoidal discrete surface, since in general $\Upsilon^{(6)}(\mathfrak{u}) \neq \mathfrak{u}$
Continuing the iterations produces a discrete helicoid denoted $\mathcal{H}=\mathcal{H}(\mathfrak{u})$, a "Riemann surface"-like structure of non-negative integers. Let $\mathcal{H}_{n}=\mathcal{H}_{n}(\mathfrak{u}), n \geq 1$, denote the n-th levels of the helicoid, so that

$$
\begin{equation*}
\mathcal{H}=\bigcup_{n>1} \mathcal{H}_{n} . \tag{1}
\end{equation*}
$$

FILTERED RAYS OVER ITERATED ABSOLUTE DIFFERENCES ON LAYERS OF INTEGERS

Results proved on SP Numbers

- The number of SP numbers smaller than a given number n is asymptotic to $\frac{n}{\log n}$
There are infinitely many SP twins (pairs of consecutive SP Numbers).
For any positive integer x, there exist two SP numbers a, b such that $x=a-b$
- Any positive integer appears infinitely often as a difference between square-primes.

Results proved in Paper

There exists an infinite subsequence of square-primes $A_{1}<A_{2}<\ldots$ such that the (P-G) triangle generated by A_{1}, A_{2}, \ldots on the first row has 1 as every other element on the left edge.

- Let $\mathfrak{u}=\left(a_{0}, a_{1}, \ldots\right) \in \mathcal{L}_{0}$ be the first row of the (P-G) triangle and let $\mathfrak{w}=\left(b_{0}, b_{1}, \ldots\right)$ be the sequence on its left-edge. Let $f, g \in \mathbb{F}_{2}[[X]]$ be the formal power series with coefficients in \mathfrak{u} and \mathfrak{w}, respectively. Let
$T: \mathbb{F}_{2}[[X]] \rightarrow \mathbb{F}_{2}[[X]]$ be the operator defined by $T(f)=g$. Then:

1. The operator T satisfies the following formula

$$
(T(f))(X)=f\left(\frac{X}{1+X}\right) \cdot \frac{1}{1+X}
$$

2. The operator T has the property $T^{(2)}(f)=f$ for any $f \in \mathbb{F}_{2}[[X]]$, so that T is invertible and bijective.

- Let $N \geq 1$ be an integer and let
$\mathfrak{u}=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathcal{L}_{0}(N)$ be the top row and let $\mathfrak{w}=\left(b_{0}, b_{1}, \ldots, b_{N-1}\right)$ be the sequence on the left-edge the (P-G) triangle of side N. Suppose $a_{0}=b_{0}$ and let $f, g \in \mathbb{F}_{2}[X]^{[N-2]}$, be the polynomials whose coefficients are the components of \mathfrak{u} and \mathfrak{w}, respectively. Let the components of \mathfrak{u} and \mathfrak{w}, respectively. Let
$T_{N}: \mathbb{F}_{2}[X]^{[N-2]} \rightarrow \mathbb{F}_{2}[X]^{[N-2]}$ defined by $T_{N}(f)=g$. Then: 1. The operator T_{N} satisfies the following formula

$$
\left(T_{N}(f)\right)(X) \equiv f\left(\frac{X}{1+X}\right) \cdot \frac{1}{1+X}\left(\bmod X^{N}\right)
$$

2. The operator T_{N} has the property $T_{N}^{(2)}(f)=f$ for any $f \in \mathbb{F}_{2}[X]^{[N-2]}$, so that T_{N} is invertible and bijective. - Let $\boldsymbol{w}=\left\{w_{j}\right\}_{j \geq 1}$ be a sequence of non-negative integers. Then, there exists an increasing sequence of square-primes such that the ($\mathrm{P}-\mathrm{G}$) triangle they generate has on the westem edge a sequence whose even-indexed elements are the elements of \boldsymbol{w}.

RELATED READING

匹ILLINOIS

