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A B S T R A C T

The dynamical system generated by the iterated calculation of the high order gaps between neighboring terms
of a sequence of natural numbers is remarkable and only incidentally characterized at the boundary by the
notable Proth–Gilbreath Conjecture for prime numbers.

We introduce a natural extension of the original triangular arrangement, obtaining a growing hexagonal
covering of the plane. This is just the base level of what further becomes an endless discrete helicoidal surface.
Although the repeated calculation of higher-order gaps causes the numbers that generate the helicoidal surface
to decrease, there is no guarantee, and most often it does not even happen, that the levels of the helicoid have
any regularity, at least at the bottom levels.

However, we prove that there exists a large and nontrivial class of sequences with the property that their
helicoids have all levels coinciding with their base levels. This class includes in particular many ultimately
binary sequences with a special header For almost all of these sequences, we additionally show that although
the patterns generated by them seem to fall somewhere between ordered and disordered, exhibiting fractal-like
and random qualities at the same time, the distribution of zero and non-zero numbers at the base level has
uniformity characteristics.

Thus, we prove that a multitude of straight lines that traverse the patterns encounter zero and non-zero
numbers in almost equal proportions.
1. Introduction

Let u = {𝑎𝑘}𝑘≥0 be a sequence of non-negative integers. We place
the sequence u on the top row of a triangle whose subsequent rows are
recursively obtained as sequences of numbers given by the absolute
values of the differences between neighboring terms on the previous
line. The infinite equilateral triangle obtained in this way is defined by

0 𝑎1 𝑎2 𝑎3 𝑎4 …
𝑑(1)0 𝑑(1)1 𝑑(1)2 𝑑(1)3 …

𝑑(2)0 𝑑(2)1 𝑑(2)2 …
𝑑(3)0 𝑑(3)1 …

… …

(P-G)

where

𝑑(𝑗+1)𝑘 ∶= |

|

|

𝑑(𝑗)𝑘+1 − 𝑑(𝑗)𝑘
|

|

|

and 𝑑(0)𝑘 ∶= 𝑎𝑘 for 𝑗, 𝑘 ≥ 0. (1)

Let w = {𝑏𝑗}𝑗≥0 be the sequence of numbers on the left edge of this
triangle, that is, 𝑏0 = 𝑎0 and 𝑏𝑗 = 𝑑(𝑗)0 for 𝑗 ≥ 1. We also denote by
w𝑘 =

{

𝑑(𝑗)𝑘
}

𝑗≥0, for 𝑘 ≥ 0, the column or the ray that passes through

∗ Corresponding author.
E-mail addresses: rnbhat2@illinois.edu (R.N. Bhat), cristian.cobeli@imar.ro (C. Cobeli), zaharesc@illinois.edu (A. Zaharescu).

the triangle parallel to the edge on the left, with the first component
being 𝑎𝑘, so that w = w0.

Taking successively the absolute values of higher-order differences,
the resulting numbers on the lower rows become smaller and smaller. It
is then natural to observe this comprehensive phenomenon on the left
edge. However, the components of w may not necessarily become all
equal to 0, but we should expect that from a certain point onwards they
will take at most two values, one being zero and the other an integer
different from zero, provided u does not grow too fast. Considering, for
example, the simpler revealing case where the components of u only
take the values 0 or 𝑎, where 𝑎 is a positive integer, then the numbers
on the left edge are also only 0’s or 𝑎’s.

The famous case of this type of construction, where the top row is
the sequence of prime numbers, is the subject of the Proth-Gilbreath
conjecture (see Proth [1], Gilbreath [2], Killgrove and Ralston [3],
Odlyzko [4] and the problem sets of Guy [5, Example 12], [6, Problem
A10] and Montgomery [7, Appendix Problem 68]) In accordance with
common sense and extensive numerical observations (see [3,4]), the
conjecture states that all the entries of w except 𝑏0 are equal to 1.
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. The triangle generated by u that contains the first 30 square-prime numbers. (See Section 3 for the formal definition and some appealing properties that the sequence of
square-primes has.) Then, with 𝛶 (𝑛)(u) as initial rows, five more triangles are generated. The six figures represent the intermediate steps in forming the first layer of the helicoid.
t
T

𝛶

L
t
t
r
A
o
o
t
a

r
w
A
a
c
𝛶
s
h
n
h



T
l
𝑘
i
g
i
n

s
o
𝛶
i
1
p

Conjecture 1 (Proth-Gilbreath). All the differences on the western edge of
the (P-G) triangle generated by the sequence of all primes are equal to 1.

However, to this day, in the sequence that is believed, as stated in
onjecture 1, to be constantly equal to 1, it is not even known if there
re an infinite number of 1’s.

In fact, the reality generated by the primes is even more intriguing
eyond the left edge w0. Inside the (P-G) triangle, the phenomenon
s exactly at the opposite end. First, let us observe that on w1, the

immediately adjacent parallel line to the left edge, there are only 0’s
or 2’s, according to Conjecture 1. Furthermore, numerical evidence
shows that these values are present on this line in approximately equal
proportions. And likewise, when moving inside towards the right, on
the following parallel rays w𝑗 , 𝑗 ≥ 2, it is also very likely that the same
fact holds true (see Table 1)

Conjecture 2. Let w𝑗 , 𝑗 ≥ 1, be any line parallel to the left edge of
the (P-G) triangle generated by the sequence of all primes. Denote by 𝜈𝑑 (𝑛)
he number of 𝑑’s among the first 𝑛 elements of w𝑗 . Then, for 𝑑 ∈ {0, 2},
here exists a constant 𝑐 > 0 and an integer 𝑛𝑗 , such that

𝜈𝑑 (𝑛) −
𝑛
2
|

|

|

< 𝑐
√

𝑛, for 𝑛 ≥ 𝑛𝑗 .

We expect the same type of uniform distribution to occur on other
rays that cross the infinite (P-G), for example, those that pick the
differences at equally spaced intervals in different directions. Similarly,
in convex domains, that are sufficiently large and are situated far
enough from the starting row, the number of 0’s and the number of
2’s should be approximately the same with probability one.

The structure of the discrete dynamical system generated by iter-
atively calculating neighbor gaps recorded in the (P-G) triangle can
be better understood when viewed in a broader context (see [8]) that
is related to phenomena occurring in Pascal’s triangle (see [9,10] and
Prunescu et al. [11,12]) or the patterns of numbers generated in Ducci
type games (see Caragiu, Zaki et al. [13–17]).

Let  denote the set of sequences of non-negative integers, and
let 0 ⊂  be the set of sequences with terms equal to 0 or 1, only.
Similarly, for any integer 𝑁 ≥ 0, let (𝑁) and 0(𝑁) be the sets of
finite sequences with 𝑁 non-negative integer elements, and sequences
consisting only of 0’s or 1’s, respectively. If s is a sequence and 𝑁 ≥ 0,

e denote by s(𝑁) the partial finite sequence formed by the first 𝑁
lements of s.
2

In this paper, we examine the overlying operator 𝛶 that transforms
he top sequence u into the one on the left edge w in the (P-G) triangle.
hen 𝛶 is defined by

∶  →  and 𝛶 (u) ∶= w.

et 𝛹 ∶  →  be the operator that transforms a horizontal row of
he triangle into the immediately following row. Note that the entire
riangle (P-G) is composed of the sequence of successive horizontal
ows 𝛹 (𝑗)(u), for 𝑗 ≥ 0, where 𝛹 (0)(u) = u is the top generating row.
lso note that the restrictions of 𝛹 and 𝛶 to 0 have in their image
nly sequences in 0. The same type of property occurs with the action
f 𝛹 and 𝛶 on sequences s of 0’s and 1’s, except for a finite number of
erms. For these sequences, 𝛹 (s) is also ultimately composed only of 0’s
nd 1’s, but this is not generally true for 𝛶 (s).

The geometric correspondent of each iteration of 𝛶 applied on u

esults in the construction of a new equilateral triangle, rotated clock-
ise around the first component 𝑎0 of u by an angle of 60 degrees.
fter six iterations of 𝛶 , the initial sequence u is geometrically reached
gain. This results in the completion of the first layer or level of what
an further be seen as a helicoidal discrete surface, since in general
(6)(u) ≠ u (see Fig. 1 for an example of these iterations with a finite

equence of integers). Continuing the iterations produces a discrete
elicoid denoted  = (u), a ‘‘Riemann surface’’-like structure of non-
egative integers. Let 𝑛 = 𝑛(u), 𝑛 ≥ 1, denote the 𝑛th levels of the
elicoid, so that

=
⋃

𝑛≥1
𝑛. (2)

he first level 1, called also the base layer, is the union of six equi-
ateral triangles with a vertex in 𝑎0 and edges 𝛶 (𝑘)(u) and 𝛶 (𝑘+1)(u) for
= 0,… , 5. The subsequent levels are each generated similarly by their

nitial sequence 𝛶 (6𝑘)(u) for 𝑘 ≥ 0. Note that all layers are congruent
eometrically, each of them covering the entire plane with numbers,
f u is infinite, or having the shape of a regular hexagon with 𝑁 + 1
umbers on each side if u = (𝑎0,… , 𝑎𝑁 ) (see Fig. 2).

The result of this process leads to a simple pattern when u is the
equence of prime numbers, which, at least under the assumption
f the Proth-Gilbreath Conjecture, is well understood. In this case
(𝑛)(u) = (2, 1, 1, 1,…) for 𝑛 ≥ 1, so that the interior of the correspond-

ng generated equilateral triangles are then bounded by sequences of
’s and have only 0’s inside. However, there is a much more interesting
erspective if we mark in the initial sequence only the positions where
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Fig. 2. The first seven layers of the helicoid generated by the sequence (100000, 59049, 32768, 16807, 7776, 3125, 1024, 243, 32, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0), where the first positive integers
are the first ten 5th powers in decreasing order. The four captures are taken in order from bottom, sides, and top. Distinct integers are shown in different colors. The helicoid
has seven distinct layers, and starting from the 8th, all layers coincide with the 7th. The vertical strip indicates the places where the last outcome row on one layer transcends,
becoming the first generating row on the upper layer.
Fig. 3. Left: The base layer of the helicoid generated by the prime-number-indicator function for integers in the interval [0, 50). Right: The base layer of the helicoid generated
by the sequence: 3072, 1536, 768, 384, 192, 96, 48, 24, 12, 6, 3 (the first 10 integers that are 3 times a power of 2 in decreasing order), followed by a sequence or ‘random bits’ defined
by ind[0,1∕2)

(

{𝑘
√

2}
)

for 𝑘 = 1, 2,… , 40. (Note that by Theorem 4, in both cases, the helicoids have identical layers at each level.).
prime numbers appear, their size being given by the rank of the terms
in the sequence. To be precise, let i = {ind (𝑗)}𝑗≥0 be the indicator
sequence of prime numbers, where

ind (𝑗) =

{

1 if 𝑗 is prime,
0 else.

Among our numerical experiments, we observed with surprise that
the 6th iteration of 𝛶 brings i back to its starting point. Indeed, the
helicoid generated by i with its leaves composed of six equilateral
triangles each, actually has only one leaf, all the subsequent that follow
being identical to the first modulo a rotation or a reflection.

We will show that this phenomenon is not unique and that there is
a large class of generating sequences u that have the same property
𝛶 (6)(u) = u. In Theorem 4 below we consider these sequences and
note, according to Theorem 5, that their class includes a multitude
of sequences that are expected to exhibit a random behavior, like the
indicator function of primes has.

2. The main results

The problem of demonstrating the uniform distribution of zeros
and ones on the sides or on certain rays that cross the (P-G) triangle
generated by some generic initial sequence is not within our reach.
3

However, beyond the specific results that can be obtained in particular
cases, we can prove the following existence result with square-prime
numbers.

Theorem 1. There exists an infinite increasing subsequence of square-
primes 𝐴1 < 𝐴2 < ⋯ such that the (P-G) triangle generated by 𝐴1, 𝐴2,…
on the first row has 1 as every other element on the left edge.

Note that Theorem 1 implies that there are (P-G) triangles generated
by sequences of square-prime numbers for which at least half of the
elements on the left edge are 1.

What is actually specific to the (P-G) constructions is not the singu-
lar fact that the edge on the left only has a special form, as it happens
when the generator is the sequence of prime numbers and the constant
shape of the edge on the left is given by almost an arithmetic accident.
An impression of what happens most often can be seen in Fig. 4, where
the triangles generated by prime and square-prime numbers are placed
side by side for comparison.

Then what is truly remarkable is that the rays w𝑗 parallel to the left
edge tend to have a random sequence appearance. In particular, the
sequences w𝑗 seem to become binary, and the statistics that count the
number of the two types of elements indicate this. Thus, Table 1 shows
the closeness between the number of 0’s and the number of 2’s on rays
w1,… ,w9 for the partial (P-G) triangle generated by prime numbers
less than one million and the high order differences taken modulo 4.
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Fig. 4. Two cut-offs of the (P-G) triangles with integers taken modulo 4 (left) and modulo 2 (right). In the image on the left, the triangle is generated by the first 78 primes less
han 400, and in the image on the right, the top row contains the 75 square-prime numbers less than 400.
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Table 1
The frequencies of the absolute values of the differences on the rays w0 ,… ,w9 that
cross a cut-off of the (P-G) triangle passing parallel to its left edge. The generating
row contains the prime numbers less than one million. Counting is done based on the
values of the higher-order differences taken modulo 4 The notations are as follows: 𝑟 is
he rank of the ray, starting with the left edge w that has rank 𝑟 = 0; 𝑁 is the number
f differences on the ray (note that there are no differences on the first row of (P-G));
n the header row, 𝑧 is the number of 0’s, 𝑡 is the number of 2’s, and ℎ is the number
f values that are not equal to 0 or 2.
𝑟 𝑁 𝑧 𝑡 𝑧 − 𝑡 ℎ (𝑧 − 𝑡)∕𝑁

0 78 497 0 0 0 78 497 0.00000
1 78 496 39 061 39 435 −374 0 −0.00476
2 78 495 39 272 39 223 49 0 0.00062
3 78 494 39 218 39 275 −57 1 −0.00073
4 78 493 39 405 39 088 317 0 0.00404
5 78 492 39 311 39 180 131 1 0.00167
6 78 491 39 030 39 461 −431 0 −0.00549
7 78 490 39 307 39 182 125 1 0.00159
8 78 489 39 276 39 211 65 2 0.00083
9 78 488 39 231 39 256 −25 1 −0.00032

To compare, the same property is observed in Table 2 when the
irst row begins with the square-prime numbers less than one million
nd differences taken modulo 2. In this case, on each of the columns
0,… ,w9, the distribution of the number of 0’s and the number of 1’s

s also almost evenly split in half. And this is not only happening on the
estern edge, the same phenomenon occurs inside the (P-G) triangle as
ell. To quantify the distribution let us measure the rate of change on

ays.
The next theorem demonstrates the existence of an underlying link

etween the horizontal and the vertical/diagonal rows of the (P-G)
riangle.

heorem 2. Let u = (𝑎0, 𝑎1,…) ∈ 0 be the first row of the (P-G) triangle
nd let w = (𝑏0, 𝑏1,…) be the sequence on its left-edge. Let 𝑓, 𝑔 ∈ F2[[𝑋]]
e the formal power series with coefficients in u and w, respectively. Let
∶ F2[[𝑋]] → F2[[𝑋]] be the operator defined by 𝑇 (𝑓 ) = 𝑔. Then:

(1) The operator 𝑇 satisfies the following formula
(

𝑇 (𝑓 )
)

(𝑋) = 𝑓
(

𝑋
1 +𝑋

)

⋅ 1
1 +𝑋

. (3)

(2) The operator 𝑇 has the property 𝑇 (2)(𝑓 ) = 𝑓 for any 𝑓 ∈ F2[[𝑋]],
so that 𝑇 is invertible and bijective.

The phenomenon of involution between u and w shown in Theo-
rem 2 occurs even more exquisitely for all (P-G) triangles of bounded
4

size. Consequently, an analogous version of Theorem 2 holds true for n
Table 2
The frequencies of the absolute values of the differences on the rays w0 ,… ,w9 that
ross a cut-off of the (P-G) triangle passing parallel to its left edge. The generating row
ontains the 69 179 square-primes less than one million. Counting is done based on the
alues of the higher-order differences taken modulo 2 The notations are as follows: 𝑟 is
he rank of the ray, starting with the left edge 𝑟0 = w; 𝑁 is the number of differences
n the ray (note that there are no differences on the first row of (P-G)); 𝑧 is the number
f 0’s, 𝑜 is the number of 1’s, and ℎ is the number of values that are not equal to 0
r 1.
𝑟 𝑁 𝑧 𝑜 𝑧 − 𝑜 ℎ (𝑧 − 𝑜)∕𝑁

0 69 178 34 616 34 559 57 3 0.00082
1 69 177 34 684 34 485 199 8 0.00288
2 69 176 34 614 34 556 58 6 0.00084
3 69 175 34 439 34 727 −288 9 −0.00416
4 69 174 34 485 34 681 −196 8 −0.00283
5 69 173 34 808 34 357 451 8 0.00652
6 69 172 34 707 34 458 249 7 0.00360
7 69 171 34 471 34 694 −223 6 −0.00322
8 69 170 34 644 34 522 122 4 0.00176
9 69 169 34 689 34 472 217 8 0.00314

such triangles of finite size. Here, polynomials play the role of the
formal power series because they can be thought of as formal power
series with a finite number of nonzero coefficients.

Let 𝑅[𝑋][𝑛] denote the set of polynomials with coefficients in 𝑅 and
egree at most 𝑛.

heorem 3. Let 𝑁 ≥ 1 be an integer and let u = (𝑎0, 𝑎1,… , 𝑎𝑁−1) ∈
0(𝑁) be the top row and let w = (𝑏0, 𝑏1,… , 𝑏𝑁−1) be the sequence on the
eft-edge of the (P-G) triangle of side 𝑁 . Suppose 𝑎0 = 𝑏0 and let 𝑓, 𝑔 ∈
2[𝑋][𝑁−2], be the polynomials whose coefficients are the components of
and w, respectively Let 𝑇𝑁 ∶ F2[𝑋][𝑁−2] → F2[𝑋][𝑁−2] defined by

𝑁 (𝑓 ) = 𝑔. Then:

(1) The operator 𝑇𝑁 satisfies the following formula
(

𝑇𝑁 (𝑓 )
)

(𝑋) ≡ 𝑓
(

𝑋
1 +𝑋

)

⋅ 1
1 +𝑋

(

mod 𝑋𝑁)

. (4)

(2) The operator 𝑇𝑁 has the property 𝑇 (2)
𝑁 (𝑓 ) = 𝑓 for any 𝑓 ∈

F2[𝑋][𝑁−2], so that 𝑇𝑁 is invertible and bijective.

As a follow-up of Theorems 2 and 3, we find that 𝛶 (6)(u) = u for all
inary finite or infinite sequences u, which in particular proves to be
rue the inceptive observation discussed at the end of the Introduction
or the indicator function of primes. The above theorems also imply
hat the helicoids generated by binary sequences have only one distinct
ayer, which is a three-petal hexagon. The next results also shows the
ecessity of an additional condition that must be fulfilled by the more
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general sequences in  so that they also generate helicoids with just a
single distinct layer. The general statement includes both the case of
infinite sequences and the case of finite sequences, as we consider the
ring of polynomials embedded in the ring of formal power series, where
polynomials have only a finite number of non-zero coefficients.

First, we define the concept of a champion in a sequence. We say
that the term of rank 𝑛 ≥ 0 in the sequence s = {𝑎𝑘}𝑘≥0 of non-
negative integers is a champion of s, or shortly a champion, if 𝑎𝑛 > 0 and
𝑎𝑗 < 𝑎𝑛 for 0 ≤ 𝑗 < 𝑛. Note that an unbounded sequence has infinitely
many champions, and in a strictly increasing sequence all its terms are
champions. However, our point is at the other end, at sequences with
at most one champion.

Theorem 4. Let u ∈  and let 𝛶 ∶  →  be the operator defined by
𝛶 (u) = w, where w is the sequence of numbers obtained as the left edge of
the (P-G) triangle generated by u. Then:

(1) Any discrete helicoid, as defined by relation (2), which is generated
by a finite or infinite binary sequences u ∈ 0(𝑁) or u ∈ 0 has all
levels equal, that is 𝛶 (6)(u) = u.

(2) The base level of the helicoids generated by binary finite or infinite
sequences are composed by three equal diamonds rotated around the
origin, and each of these diamonds is the union of two equilateral
triangles that mirror each other with respect to the diagonal that joins
the corners with obtuse vertices of the diamond.

(3) Let u ∈  and suppose that 𝛶 (6)(u) = u. Then the sequence u has at
most one champion.

If u is a finite sequence, since the numbers in the helicoid (u)
have a general tendency to decrease, in any case, all of them being at
most equal to the largest component of u, it follows that the sequence
𝑛(u)}𝑛≥1 of the hexagonal layers of numbers that compose (u) is
inally periodic. The sequence of these layers should then be composed
f a precycle followed by a cycle, both of finite length. Note that the
ength of a precycle can be zero, but the length of a cycle must always
e positive. According to the first part of Theorem 4, the length of the
recycle is zero and the length of the cycle is one, for all binary gen-
rators u ∈ 0(𝑁), where 𝑁 ≥ 1, as well as for infinite sequences in .
urther investigation is needed to classify the generating sequences
ased on the length of the precycle or the cycle of the sequences of
ayers that their helicoids have. The following is an example of such a
omprehensive problem.

roblem 1. Let 𝑃 ≥ 0 and 𝐶 ≥ 1 be integers. Find u ∈ (𝑁), for some
≥ 1, such that the sequence {𝑛(u)}𝑛≥1 of layers of the helicoid (u)

as exactly 𝑃 +𝐶 distinct layers, grouped in a precycle of length 𝑃 , and
ollowed by the endless repetition of a cycle of length 𝐶.

For finite sequences with a single champion, we numerically tested
arious decreasing sequences of integers followed by a sequence of
’s or 1’s. We found that many such sequences produce helicoids
ith a sequence of layers composed by a precycle (possibly empty)
nd a cycle of length one. Yet this is not generally observed, as for
nstance, the helicoid generated by the first positive 77 seventh powers
rranged in decreasing order and followed by the sequence of ten
its: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 generates a helicoid with 17 distinct layers,
f which 9 are in a precycle, and 8 are in the subsequent infinitely
epeated cycle.

In Fig. 3 there are shown the base layer of two helicoids whose
pper layers coincide with their initial ones. In both cases the gener-
ting sequences have exactly one champion. In Section 5 we present
everal other examples of sequences with just one champion, whose
elicoids have only one distinct level. Additionally, we show that the
roperty of having a single champion is not sufficient to characterize
he one-distinct-level helicoids. Indeed, there are sequences with just
ne champion whose helicoids have more distinct levels, such as those
n Fig. 8 (left) and Fig. 6 (right), which have four and nine distinct
evels, respectively.
5

For any ray w𝑘, for 𝑘 ≥ 0, that is parallel to the western edge w0, let
w(𝑘) denote the proportion of zeros among the first 𝑁 components of

he ray, that is,

w(𝑘) ∶= 1
𝑁 − 𝑘

#
{

𝑗 ∶ 𝑑(𝑗)𝑘 = 1, 0 ≤ 𝑗 < 𝑁
}

, for 0 ≤ 𝑘 ≤ 𝑁. (5)

Symmetrical with respect to vertical axes, let us consider the eastern
dges of the cut-off (P-G). For any fixed integer 𝑁 ≥ 0, denote by
0, e1,… these edges, seen this time geometrically, in order from right
o left. Precisely, e𝑘 = e𝑘(𝑁), 0 ≤ 𝑘 ≤ 𝑁 , is defined by

𝑘 ∶=
{

𝑑(𝑗)𝑁−𝑘 ∶ 0 ≤ 𝑗 ≤ 𝑁, 𝑗 + 𝑘 = 𝑁
}

.

hen, just like for the western edges, let us denote by 𝑅e(𝑘) the
roportion of zeros on e𝑘:

e(𝑘) ∶=
1

𝑁 − 𝑘
#
{

𝑗 ∶ 𝑑(𝑗)𝑁−𝑘 = 1, 0 ≤ 𝑗 < 𝑁, 𝑗+𝑘 = 𝑁
}

, for 0 ≤ 𝑘 ≤ 𝑁.

(6)

The following theorem shows that almost all (P-G) triangles gener-
ted by sequences of 0’s and 1’s have nearly equal proportions of 0’s
nd 1’s on the rays w0,w1,… and e0, e1,… The more precise result is
s follows

heorem 5. For any 𝜀 ∈ (0, 1∕2), there exits 𝛿 = 𝛿𝜀 > 0 and an
integer 𝑁𝜀,𝛿 such that, for any integer 𝑁 ≥ 𝑁𝜀,𝛿 , there exists an exceptional
ubset (𝑁) ⊂ 0(𝑁) (possibly empty) having at most 𝜀 ⋅ #0(𝑁) elements,
such that, for any sequence u(𝑁) ∈ 0(𝑁) ⧵ (𝑁), all ratios, defined
y (5) and (6), of the number of zeros on the rays w0,w1,… ,w

⌊𝛿𝑁⌋

and
0, e1,… , e

⌊𝛿𝑁⌋

in the corresponding triangle (P-G) satisfy

w(0), 𝑅w(2),… , 𝑅w

(

⌊𝛿𝑁⌋

)

∈ [1∕2 − 𝜖, 1∕2 + 𝜖], and
𝑅e(0), 𝑅e(2),… , 𝑅e

(

⌊𝛿𝑁⌋

)

∈ [1∕2 − 𝜖, 1∕2 + 𝜖].
(7)

3. Differences with square-primes

3.1. Preliminary notes on SP-numbers

Merging together squares larger than one and primes into the
recently introduced sequence of square-primes [9,18–20] proves to be
a bright combination. Formally, the sequence is defined as the ordered
union:

𝑆 ∶=
∞
⨆

𝑘=2
{𝑘2𝑝 ∣ 𝑝 prime}

=
{

8, 12, 18, 20, 27, 28, 32, 44, 45, 48, 50, 52,

63, 68, 72, 75, 76, 80, 92, 98, 99,…
}

.

Note that there are no primes nor squares in the set 𝑆 . Due to the
uniform growth of the gaps between squares, this new sequence, also
called SP-numbers, has a type of distribution that reverberates from a
distance that of the prime numbers (for the higher order differences
of primes and square-primes, in Fig. 4 there are side-by-side two
triangles generated by them for comparison). However, the change
in the arithmetic nature from primes to composite numbers, makes
proving some remarkable properties that the prime number sequence
has transferred to SP-numbers not as difficult if we employ what we
already know about prime numbers.

Let 𝑠𝑛, 𝑛 ≥ 1, denote the 𝑛th square-prime. A few such numbers are
𝑠1 = 8, 𝑠21 = 99, 𝑠76 = 404 and 𝑠1000 = 7900. An asymptotic estimate
(see [19, Theorem 4.1]) shows that 𝑠𝑛 and 𝑝𝑛 have a similar order of
magnitude:

𝑠𝑛 =
(

𝜁 (2) − 1
)

⋅ 𝑛
log 𝑛

+ 𝑂
(

𝑛
log 𝑛2

)

,

and 𝑠𝑛 < 𝑝𝑛 for large 𝑛 because 𝜁 (2) − 1 ≈ 0.64493 < 1. An analogous
result to Dirichlet’s Theorem [19, Theorem 6.1] on primes in arith-
metic progressions holds with a different constant depending on the
progression for square-primes, also.
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In the increasing sequence of square-primes, twins are pairs of
neighbor numbers that are 1 distance apart (such as 27 and 28 or
4 and 45), and we know that there are infinitely many such pairs
19, Theorem 4.3]. Closely related to this is the following lemma that
e need in the proof of Theorem 1. The proof of the lemma appears

n [18] and for the sake of completeness, we include here, also.

emma 3.1 ([18, Theorem 2.1]). For any positive integer 𝑥, there exist
wo square-prime numbers 𝑎, 𝑏 such that 𝑥 = 𝑎 − 𝑏.

roof. We partition the set of all positive integers into the following
ive subsets:

(i) 𝑆1 = {1}.
(ii) 𝑆2 =  , the set of all primes.
iii) 𝑆3 = {𝑥 ∶ 𝑥 ∉  , 2 ∤ 𝑥}, the set of all odd composite numbers.
(iv) 𝑆4 = {𝑥 ∶ 𝑥 = 2𝑝1 ⋯ 𝑝𝑘, 𝑘 ≥ 1, for some distinct odd primes},

the set of all even composite square-free numbers.
(v) 𝑆5 = {𝑥 ∶ 𝑥 = 𝑝2𝑑, 𝑝 ∈  , 𝑑 ≥ 1}, the set of non-square-free

numbers.

0
Note that N ⧵ {0} = 𝑆1 ∪𝑆2 ∪𝑆3 ∪𝑆4 ∪𝑆5, hence it suffices to prove

the existence of a pair of 𝑆𝑃 -numbers with difference 𝑥, separately, for
𝑥 ∈ 𝑆𝑗 , 1 ≤ 𝑗 ≤ 5.

(i) We have only one candidate, 𝑥 = 1, in this case. There exist
infinitely many neighbor SP-numbers [19, Theorem 4.3], but it is
enough to consider the first example (𝑎, 𝑏) = (28, 27), for which 𝑎−𝑏 = 1,
which proves the case.

(ii) Let 𝑥 ∈  be fixed, and let also 𝑝 ∈  be a different prime
number. Consider the following Pell equation in variables 𝑚, 𝑛 ∈ Z:

𝑚2 − 𝑝𝑥𝑛2 = 1. (8)

Since 𝑝𝑥 is not a square, we know after Pell that (8) has at least a
solution with 𝑚, 𝑛 > 1. Let (𝑀,𝑁) be such a solution. Then, 𝑀2 −
𝑝𝑥𝑁2 = 1, and multiplying this equality by 𝑥, we find that

𝑥𝑀2 − 𝑝(𝑥𝑁)2 = 𝑥. (9)

Observing that 𝑎 ∶= 𝑥𝑀2 and 𝑏 ∶= 𝑝(𝑥𝑁)2 are both SP-numbers, the
equality (9), which becomes 𝑎 − 𝑏 = 𝑥, proves the lemma in this case.

(iii) Suppose now that 𝑥 is an odd composite square-free number.
Then, 𝑥 = 𝑝𝑦, where 𝑝 ≥ 3 is prime and 𝑦 ≥ 5 is prime or a product
of distinct primes ≥ 5. Thus 𝑦 is also necessarily odd. Let 𝑦 = 2𝐾 + 1
for some integer 𝐾 ≥ 2. It then follows that 𝑦 is a difference of two
squares: 𝑦 = (𝐾 + 1)2 −𝐾2, which implies

𝑥 = 𝑝
(

(𝐾 + 1)2 −𝐾2) = 𝑝(𝐾 + 1)2 − 𝑝𝐾2. (10)

Let 𝑎 ∶= 𝑝(𝐾 + 1)2 and 𝑏 ∶= 𝑝𝐾2. Since 𝐾 > 1, both 𝑎 and 𝑏 are square-
prime numbers and (10) shows that 𝑥 = 𝑎 − 𝑏, which concludes the
proof in this case as well.

(iv) Now let us assume that 𝑥 is an even composite square-free
number. Then 𝑥 = 2𝑦, where 𝑦 ≥ 3 is prime or a product of distinct
primes ≥ 3. Reasoning as in the previous case, we find that 𝑦 = 2𝐾 +1,
and the analogue of (10) is

𝑥 = 2
(

(𝐾 + 1)2 −𝐾2) = 2(𝐾 + 1)2 − 2𝐾2, (11)

where 𝐾 is a positive integer that can also be equal to 1 this time.
Let 𝑎 ∶= 2(𝐾 + 1)2 and 𝑏 ∶= 2𝐾2. Note that if 𝐾 > 1, then both 𝑎

and 𝑏 are SP-numbers and (11) shows that 𝑥 = 𝑎 − 𝑏.
In the remaining possibility when 𝐾 = 1, we have 𝑦 = 3, so

𝑥 = 6, which can also be written as a difference of square-primes:
6 = 2 ⋅ 32 − 3 ⋅ 22, concluding the argument in case (iv).

(v) Let us assume now that 𝑥 > 1 is not square-free, that is, 𝑥 = 𝑐2𝑦
6

for some integers 𝑐 > 1, 𝑦 ≥ 1, and 𝑦 is square-free. Then, from the g
proved cases (i)-(iv), we know that there exist two square-prime num-
bers 𝑎′ and 𝑏′ such that 𝑦 = 𝑎′−𝑏′ Let us say that 𝑎′ = 𝑝′𝑠2 and 𝑏′ = 𝑝′′𝑡2,

here 𝑝′, 𝑝′′ are prime numbers and 𝑠, 𝑡 > 1 are integers. These yield:

= 𝑐2𝑦 = 𝑐2(𝑎′ − 𝑏′) = 𝑝′𝑠2𝑐2 − 𝑝′′𝑡2𝑐2.

et 𝑎 ∶= 𝑝′(𝑠𝑐)2 and 𝑏 ∶= 𝑝′′(𝑡𝑐)2. Since 𝑝′, 𝑝′′ are primes and 𝑠𝑐, 𝑡𝑐 > 1,
oth 𝑎 and 𝑏 are SP-numbers, and the above shows that 𝑥 = 𝑎 − 𝑏
his concludes the proof for case (v) and also the entire proof of the

emma. □

On combining Lemma 3.1 with the fact that any distance between
wo square-primes is replicated infinitely often as the difference be-
ween other square-primes [19, Theorem 4.3], we find that all positive
ntegers appear infinitely often as differences between square-primes.

emma 3.2. Any positive integer appears infinitely often as a difference
etween square-primes.

.2. Proof of Theorem 1

We begin by proving a related result which shows that a (P-G)
riangle with ‘controlled size’ elements on the eastern edge can be
nlarged by padding it in such a way that the new southern vertex has
preset number 𝑍.

roposition 3.1. Consider a (P-G) triangle with integers 0 ≤ 𝐵1 ≤ 𝐵2 ≤
≤ 𝐵𝑚 on the eastern edge e1. Then, there exists an integer 𝐶1 ≥ 𝐵1, such

hat the triangle bordered by a new eastern edge e0 obtained by calculating
he differences generated by the addition of 𝐶1 at the end of the generating
ow has components 𝐶1, 𝐶2,… , 𝐶𝑚, 𝐶𝑚+1 with 𝐶𝑗 ≥ 𝐵𝑗 for 1 ≤ 𝑗 ≤ 𝑚.
oreover, given an integer 𝑍 ≥ 0, we can choose 𝐶1 such that 𝐶𝑚+1 = 𝑍.

roof. With some arbitrary integers 𝐴1,… , 𝐴𝑚−1, the triangle in the
tatement of the proposition is as follows:

𝐴1 𝐴2 … 𝐴𝑚−1 𝐵1 𝐶1
… … … 𝐵2 𝐶2

… … 𝐵3 𝐶3
… … …

𝐵𝑚 𝐶𝑚
𝑍

e proceed backwards, from bottom to top. Let us assume that 𝑍 ≥ 0
s given and it takes the position of 𝐶𝑚+1. Then, according to the
efinition, we may take 𝐶𝑚 such that 𝐶𝑚 − 𝐵𝑚 = 𝑍 = 𝐶𝑚+1, that is,
𝑚 = 𝐶𝑚+1 + 𝐵𝑚 ≥ 𝐵𝑚.

Next, take 𝐶𝑚−1 such that 𝐶𝑚−1 − 𝐵𝑚−1 = 𝐶𝑚, so that 𝐶𝑚−1 =
𝑚 + 𝐵𝑚−1 ≥ 𝐵𝑚−1.

Likewise, inductively, it follows that we may take 𝐶1 such that
1 − 𝐵1 = 𝐶2, so that 𝐶1 = 𝐶2 + 𝐵1 ≥ 𝐵1.

In conclusion, we obtained 𝐶1 and the sequence 𝐶1,… , 𝐶𝑚+1, which
atisfies the inequalities 𝐶1 ≥ 𝐵1,… , 𝐶𝑚 ≥ 𝐵𝑚, and additionally
𝑚+1 = 𝑍, thus proving the lemma. □

emark 3.1. Let us note that the proof of Proposition 3.1 also allows
he assumption of a different preset order between 𝐶𝑗 and 𝐵𝑗 for 1 ≤ 𝑗 ≤
. Indeed, starting in the same way from 𝑍 and recursively calculating

n reverse order the elements 𝐶𝑗 from the new equalities given by the
reset order, we obtain 𝐶1, the new element of the first row, which
nsures that the southern vertex of the (P-G) triangle is 𝑍.

Numerical experiments show that square-prime numbers are very
andy for generating (P-G) triangles that have various properties. For
xample, one that has alternately 1 on the western edge is given in
able 3.

Turning now to the proof of Theorem 1, let us suppose that 𝑚 ≥ 2
s even and the (P-G) triangle generated by u = (𝐴1 < 𝐴2 < ⋯ < 𝐴𝑚) is
iven such that it satisfies the hypothesis of the theorem. For the case



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114315R.N. Bhat et al.
Table 3
A triangle generated by a sequence of square-primes, and their higher-order iterated differences, with alternating 1’s on the left edge.

27 28 44 76 98 112 153 171 180 188 292 316

1 16 32 22 14 41 18 9 8 104 24

15 16 10 8 27 23 9 1 96 80

1 6 2 19 4 14 8 95 16

5 4 17 15 10 6 87 79

1 13 2 5 4 81 8

12 11 3 1 77 73

1 8 2 76 4

7 6 74 72

1 68 2

67 66

1

where there are only square-prime numbers on the first row and the
elements on the western edge have 1 as every other element, there are
many small triangles satisfying these requirements (see the numerical
triangle from Table 3 that has inserted into it a few such examples).
Our objective is to border the triangle of size 𝑚 with two additional
edges to the east in such a way that the larger triangle, with a side
length of 𝑚 + 2, also satisfies the requirements of Theorem 1. Then,
by induction, we will conclude that the result holds for any triangle of
even size 𝑚 ≥ 2.

Denote by e′′ = (𝐴𝑚, 𝐷1,… , 𝐷𝑚−1) the eastern edge of the given
triangle of size 𝑚. Let 𝑋 and 𝑌 , be the two new numbers that will
continue u, and let us denote the bordering edges they generate by e′ =
(𝑋,𝐸1,… , 𝐸𝑚 − 1, 𝐸𝑚) and e = (𝑌 , 𝐹1,… , 𝐹𝑚−1, 𝐹𝑚, 𝐹𝑚+1), respectively.
Let 𝑍 be the integer on the southern vertex, that is, in the previous
notation, 𝐹𝑚+1 = 𝑍, and in the hypothesis of the theorem 𝑍 = 1. All
these notations can be seen at a glance in the following display:
𝐴1 𝐴2 … 𝐴𝑚 𝑋 𝑌

𝐴2 − 𝐴1 … 𝐷1 𝐸1 𝐹1

… 𝐷2 𝐸2 𝐹2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝐷𝑚−1 𝐸𝑚−1 𝐹𝑚−1

𝐸𝑚 𝐹𝑚

𝐹𝑚+1 = 𝑍

Let 𝛥 denote the difference 𝛥 = 𝑌 −𝑋. Proceeding backwards as in the
proof of Proposition 3.1, we find out the conditions that 𝑋 and 𝛥 must
meet. This time, we start with the necessary conditions and verify that
they actually fulfill their role. The two conditions are:

𝑋 ≥ 𝐴𝑚 +𝑍 +𝐷1 +𝐷2 +⋯ +𝐷𝑚−1 (12)

and

𝛥 = 𝑌 −𝑋 = 𝑍 +
[[

𝐷1 +𝐷3 +⋯ +𝐷𝑚−1
]]

, (13)

where, the double square brackets indicate that only the 𝐷𝑗 ’s with odd
indices are added.

Let us first note that both conditions (12) and (13) depend only
on the eastern edge e′′ of the initial triangle that we border and the
integer 𝑍 that we want as the southern vertex of the bordered triangle.
Then we know from Lemma 3.2 that there are pairs of square-primes,
no matter how big and how many, that fulfill them.

Taking into account condition (12), the numbers on the first added
border layer e′ are:

𝐸1 = 𝑋 − 𝐴𝑚,

𝐸2 = 𝐸1 −𝐷1 = 𝑋 − 𝐴𝑚 −𝐷1,

𝐸3 = 𝐸2 −𝐷2 = 𝑋 − 𝐴𝑚 −𝐷1 −𝐷2,

⋯

𝐸𝑚−1 = 𝐸𝑚−2 −𝐷𝑚−2 = 𝑋 − 𝐴𝑚 −𝐷1 −𝐷2 −⋯ −𝐷𝑚−2,
7

𝐸𝑚 = 𝐸𝑚−1 −𝐷𝑚−1 = 𝑋 − 𝐴𝑚 −𝐷1 −𝐷2 −⋯ −𝐷𝑚−2 −𝐷𝑚−1.
Further, employing condition (13) as well, these show that the differ-
ences on e, the outer layer of the border, are

𝐹1 = 𝑌 −𝑋 = 𝑍 +
[[

𝐷1 +𝐷3 +⋯ +𝐷𝑚−1
]]

,

𝐹2 = 𝐸1 − 𝐹1 = 𝑋 − 𝐴𝑚 −𝑍 −
[[

𝐷1 +𝐷3 +⋯ +𝐷𝑚−1
]]

,

𝐹3 = 𝐸2 − 𝐹2 = 𝑍 +
[[

𝐷3 +⋯ +𝐷𝑚−1
]]

,

𝐹4 = 𝐸3 − 𝐹3 = 𝑋 − 𝐴𝑚 −𝑍 −𝐷1 −𝐷2 −
[[

𝐷3 +⋯ +𝐷𝑚−1
]]

,

𝐹5 = 𝐸4 − 𝐹4 = 𝑍 +
[[

𝐷5 +⋯ +𝐷𝑚−1
]]

,

𝐹6 = 𝐸5 − 𝐹5 = 𝑋 − 𝐴𝑚 −𝑍 −𝐷1 −𝐷2 −𝐷3 −𝐷4 −
[[

𝐷5 +⋯ +𝐷𝑚−1
]]

,

⋯

𝐹𝑚−1 = 𝐸𝑚−2 − 𝐹𝑚−2 = 𝑍 +
[[

𝐷𝑚−1
]]

,

𝐹𝑚 = 𝐸𝑚−1 − 𝐹𝑚−1 = 𝑋 − 𝐴𝑚 −𝑍 −𝐷1 −𝐷2 −⋯ −𝐷𝑚−2 −
[[

𝐷𝑚−1
]]

,

𝐹𝑚+1 = 𝐸𝑚 − 𝐹𝑚 = 𝑍.

In conclusion, by extending the initial sequence u with the two
square-prime numbers 𝑋 and 𝑌 , we obtained a triangle whose southern
vertex is 𝑍 = 1, as desired, which concludes the proof of Theorem 1.

It is worth noting that in the above proof, the actual value of the
number 𝑍 did not play any special role, as 𝑍 could have taken any
value 𝑍 ≥ 0. Thus, the following more general result holds. Given a
sequence of non-negative integers {𝑤𝑗}𝑗≥1, there exists a (P-G) triangle
generated by an increasing sequence of square-primes whose western
edge is (∗, 𝑤1, ∗, 𝑤2, ∗, 𝑤3, ∗,…), where the stars are some unspecified
non-negative integers.

Theorem 6. Let 𝒘 = {𝑤𝑗}𝑗≥1 be a sequence of non-negative inte-
gers. Then, there exists an increasing sequence of square-primes such that
the (P-G) triangle they generate has on the western edge a sequence whose
even-indexed elements are the elements of 𝒘.

4. (P-G) Triangles in the mirror-rays

Suppose all entries on the top row of the (P-G) are from 0. Then
the entire triangle has the same property, also.

Next we show that there is a close, analytically expressible link
between the top row u and the left edge w of the triangle. This link
actually extends across the entire triangle, because if one cuts a few
rows from the top, then the link shall be maintained between the
remaining new-first row and the remaining elements on the new-left
edge. On the other hand, cutting also a few vertical (geometrically
rather oblique) columns on the left side, all parallel to edge w, then
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the link becomes one between the first remaining row and the first
remaining leftmost edge.

Denote the components of the top sequence by u = (𝑎0, 𝑎1,…) ∈ 0,
and the components of the left-edge sequence by w = (𝑏0, 𝑏1,…) ∈ 0.
Their corresponding formal power series are 𝑓 = 𝑓 (𝑋) ∈ F2[[𝑋]] and
𝑔 = 𝑔(𝑋) ∈ F2[[𝑋]], respectively, where

𝑓 (𝑋) =
∑

𝑛≥0
𝑎𝑛𝑋

𝑛 and 𝑔(𝑋) =
∑

𝑛≥0
𝑏𝑛𝑋

𝑛. (14)

Suppose 𝑎0 = 𝑏0 is the element in the upper left corner of (P-G), and
that it is also the constant term of both series 𝑓 and 𝑔.

4.1. Lemmas

The first lemma shows that starting somewhere on the right side
of the Pascal triangle and adding the numbers placed on the following
rows diagonally to the left, the partial sums that we obtain are equal
to the first number on the right of the next row.

Lemma 4.1. For any integers 𝐾, 𝑛 ≥ 0, we have
(

𝐾
𝐾

)

+
(

𝐾 + 1
𝐾

)

+⋯ +
(

𝐾 + 𝑛
𝐾

)

=
(

𝐾 + 𝑛 + 1
𝐾 + 1

)

. (15)

Proof. The proof follows by induction over 𝑛 using the recursive
formula that generates Pascal’s triangle.

If 𝑛 = 1, we have
(𝐾
𝐾

)

+
(𝐾+1

𝐾

)

= 1 + (𝐾 + 1) = 𝐾 + 2 =
(𝐾+2
𝐾+1

)

.
Suppose (15) holds for some 𝑛 ≥ 1. Then, since

(

𝐾 + 𝑛 + 1
𝐾 + 1

)

+
(

𝐾 + 𝑛 + 1
𝐾

)

=
(

𝐾 + 𝑛 + 2
𝐾 + 1

)

it follows that (15) also holds for 𝑛 + 1, which concludes the proof of
the lemma. □

The next lemma gives the formal power series expression and the
rational representation of a power of the fundamental series 𝐹 (𝑋) =
1∕(1 +𝑋), whose coefficients are all equal to 1 in F2.

Lemma 4.2. Let 𝐹 ∈ F2[[𝑋]], 𝐹 (𝑋) = 1 + 𝑋 + 𝑋2 +⋯. Then, for any
integer 𝑁 ≥ 0, we have
(

𝐹 (𝑋)
)𝑁+1 =

∑

𝑛≥0

(

𝑁 + 𝑛
𝑁

)

𝑋𝑛 = 1
(1 +𝑋)𝑁+1

. (16)

Proof. The proof is by induction. If 𝑁 = 1, relation (16) holds because
𝐹 (𝑋)⋅𝐹 (𝑋) =

∑

𝑛≥0(𝑛+1)𝑋𝑛, the coefficients being given by the equality
∑

𝑟≥0

∑

𝑠≥0
𝑟+𝑠=𝑛

1 ⋅ 1 = 𝑛 + 1.

Let 𝐾 ≥ 1 and suppose that the coefficient of 𝑋𝑠 in the power series
of

(

𝐹 (𝑋)
)𝐾 is

(𝐾−1+𝑠
𝐾−1

)

for all 𝑠 ≥ 0. Then, the coefficient of 𝑋𝑛 in the
roduct 𝐹 (𝑋) ⋅ 𝐹𝐾 (𝑋) is

𝑟≥0

∑

𝑠≥0
𝑟+𝑠=𝑛

1 ⋅
(

𝐾 − 1 + 𝑠
𝐾 − 1

)

=
(

𝐾 − 1 + 0
𝐾 − 1

)

+
(

𝐾 − 1 + 1
𝐾 − 1

)

+ ⋯ +
(

𝐾 − 1 + 𝑛
𝐾 − 1

)

=
(

𝐾 + 𝑛
𝐾

)

,

here the last equality follows from Lemma 4.1. Since these are ex-
ctly the coefficients of

(

𝐹 (𝑋)
)𝐾+1, this concludes the proof of the

lemma. □

4.2. Proof of Theorem 2

1. Let w = (𝑏0, 𝑏1, 𝑏2,…) be the left edge of (P-G) generated by u.
Then 𝑏0 = 𝑎0, 𝑏1 = 𝑎0 + 𝑎1, 𝑏2 = 𝑎0 + 2𝑎1 + 𝑎2 and so on. Then, by
induction, one finds that the general formula for 𝑏𝑛 is

𝑏𝑛 =
(

𝑛
)

𝑎0 +
(

𝑛
)

𝑎1 +⋯ +
(

𝑛
)

𝑎𝑛 . (17)
8

0 1 𝑛 m
The formal power series of
(

𝑇 (𝑓 )
)

(𝑋) is 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 + ⋯, and
to deduce a functional expression for it, we rearrange the terms us-
ing formula (17). Collecting together similar terms with the same
coefficient 𝑎𝑛, we see that
(

𝑇 (𝑓 )
)

(𝑋) = 𝑎0
(

1 +𝑋 +𝑋2 +𝑋3 +⋯
)

+ 𝑎1𝑋
(
(

1 + 0
1

)

+
(

1 + 1
1

)

𝑋 +
(

1 + 2
1

)

𝑋2 +
(

1 + 3
1

)

𝑋3 +⋯
)

+ 𝑎2𝑋
2
(
(

2 + 0
2

)

+
(

2 + 1
2

)

𝑋 +
(

2 + 2
2

)

𝑋2 +
(

2 + 3
2

)

𝑋3 +⋯
)

+ ⋯

+ 𝑎𝑛𝑋
𝑛
(
(

𝑛 + 0
𝑛

)

+
(

𝑛 + 1
𝑛

)

𝑋 +
(

𝑛 + 2
𝑛

)

𝑋2 +
(

𝑛 + 3
𝑛

)

𝑋3 +⋯
)

+ ⋯

Using Lemma 4.2 on each of the lines of the relation above we obtain
(

𝑇 (𝑓 )
)

(𝑋) =
𝑎0

1 +𝑋
+

𝑎1𝑋
(1 +𝑋)2

+
𝑎2𝑋2

(1 +𝑋)3
+⋯ +

𝑎𝑛𝑋𝑛

(1 +𝑋)𝑛+1
+⋯

= 1
1 +𝑋

(

𝑎0 + 𝑎1
𝑋

1 +𝑋
+ 𝑎2

(

𝑋
1 +𝑋

)2
+⋯ + 𝑎𝑛

(

𝑋
1 +𝑋

)𝑛
+⋯

)

= 1
1 +𝑋

𝑓
(

𝑋
1 +𝑋

)

,

hich proves the first point of the theorem.
We apply formula (3) twice. First we obtain

(2)(𝑓 (𝑋)
)

= 𝑇
(

𝑇
(

𝑓 (𝑋)
)

)

= 1
1 +𝑋

𝑇 (𝑓 )
(

𝑋
1 +𝑋

)

,

and then, continuing, on the second application, after reducing the
terms in the rational factions of F2(𝑋) and making the necessary
ancellations, we obtain:

(2)(𝑓 (𝑋)
)

= 1
1 +𝑋

⋅ 1
1 + 𝑋

1+𝑋

𝑓
( 𝑋

1+𝑋

1 + 𝑋
1+𝑋

)

= 𝑓 (𝑋).

t then follows that 𝑇 is invertible, so that is bijective and 𝑇 −1 = 𝑇 .
his concludes the proof of the theorem.

.3. Proof of Theorem 3

For any integer 𝑁 ≥ 0, the set of finite sequences 0(𝑁) is in one-to-
ne correspondence with the set of polynomials F2[𝑋], which in turn is
mbedded in F2[[𝑋]], viewing the polynomials as formal power series
ith only finitely many non-zero coefficients. In accordance with this,

he restriction of the application 𝑇 to 0(𝑁)[𝑋], and also that of 𝛶 , on
he sequences side, to finite binary sequences 0(𝑁), are well-defined.
urthermore, since as we have seen in the induction process during the
roof of Theorem 2, the transformations through 𝛶 that occur between
he top u and the western edge w actually occur in an ordered manner,
he first 𝑁 components of one only affect the first 𝑁 components of the
ther, for any 𝑁 ≥ 0. Therefore, Theorem 3, the finite analogue version
f Theorem 2, also holds true for (P-G) triangles of bounded size and
olynomials instead of formal power series. That is, the restriction of 𝑇
o 0(𝑁)[𝑋] is still an involution, just like the corresponding restriction
f 𝛶 to 0(𝑁) is.

. Binary generators and generators with only one champion

.1. Proof of Theorem 4

A consequence of the fact that 𝑇 is an involution, as proved in
heorems 2 and 3, on the side of the coefficients of the formal power
eries or of the polynomials, is the fact that the restriction of 𝛶 to

binary sequences is also an involution. This means that, on one hand,
𝛶 (2)(u) = u for binary sequences u and for any finite initial fragments
f these sequences, as well. It follows then that 𝛶 (6𝑘)(u) = u for 𝑘 ≥ 1,
eaning that the helicoid generated by u ∈  has all layers identical.
0
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Fig. 5. Two helicoids with identical layers on all levels. They are generated by u given by the first thirty elements of the Fibonacci sequence 𝐹𝑛 (left) and the Bisection of
ibonacci sequence 𝐹2𝑛 [21, A001906] (right) in decreasing order, followed by the sequence of ten bits: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0. Distinct integers are shown in different colors. Under
he helicoids, the corresponding generating sequences 𝛶 (0)(u), 𝛶 (1)(u),… , 𝛶 (6)(u) of the intermediate triangles are shown. In both helicoids, the initial u = 𝛶 (0)(u) is covered by
(6)(u), but they can be seen for comparison on the accompanying maps.
,

On the other hand, it also follows that 𝛶 is invertible and its inverse
atisfies 𝛶 (−1) = 𝛶 . Therefore, if 𝛶 (u) = w, it follows that 𝛶 (w) =
(2)(u) = u for all finite or infinite binary sequences u,w. Geometrically,

his means that the single layer of a helicoid generated by a binary
equence is composed of three identical diamond petals. Moreover, the
iamond is the union of two equilateral triangles, positioned symmet-
ically across the short diagonal w. This proves the first two parts of
heorem 4.

In order to prove the third part of Theorem 4, let 𝜌 ≥ 0 be integer
nd let 𝒞 (𝜌) be the hexagonal circle of differences of radius 𝜌 and
enter 𝑎0 on a layer generated by u = (𝑎0, 𝑎1, 𝑎2,…). Explicitly, the
umbers on the first edge of the circle are the elements on the eastern
dge of the (P-G) triangle:

0 =
(

𝑎𝜌 = 𝑑(0)𝜌 , 𝑑(1)𝜌−1, 𝑑
(2)
𝜌−2,… , 𝑑(𝜌)0

)

,

here the differences 𝑑(𝑗)𝑘 are defined by (1). Likewise are obtained all
he six edges 𝐸𝑚, 0 ≤ 𝑚 ≤ 5, of 𝒞 (𝜌), where 𝐸𝑚 is the eastern edge of
he (P-G) triangle generated by 𝛶 (𝑚)(u) instead of u, that is,

𝑚 =
(

𝛶 (𝑚)(𝑎𝜌) = 𝑑(0)𝜌 (𝑚), 𝑑(1)𝜌−1(𝑚), 𝑑
(2)
𝜌−2(𝑚),… , 𝑑(𝜌)(𝑚)0

)

, for 𝑚 = 0, 1,… , 5

where

𝑑(𝑗+1)𝑘 (𝑚) ∶= |

|

|

𝑑(𝑗)𝑘+1(𝑚) − 𝑑(𝑗)𝑘 (𝑚)||
|

and 𝑑(0)𝑘 (𝑚) ∶= 𝛶 (𝑚)(𝑎𝑘) for 𝑗, 𝑘 ≥ 0.

Then

𝒞 (𝜌) ∶= 𝐸0 ∪ 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5 .

Now, suppose that u is the generator of a helicoid that has just
one distinct layer, that is, we assume that 𝛶 (6)(u) = u. If 𝑎 ≥ 0 is the
𝜌th element of u, then the assumption says, in particular, that the 𝜌th
element of 𝛶 (6)(u) is also equal to 𝑎. Then, let us analyze the process of
generating the layer just on the circle 𝒞 (𝜌).

Remark 5.1. Suppose that 𝜌 > 0 and 𝑎 is a champion of the initial
sequence u, that is, 𝑎 > 0 and 𝑎 is strictly larger than all the elements
if u of lower indices.
9

(1) As the construction of the (P-G) triangle and its five subsequent
continuations involves only taking absolute values of differences,
the numbers on 𝒞 (𝜌) cannot be larger than 𝑎. Moreover, the
sequence of numbers on 𝒞 (𝜌) cannot increase again if it has
dropped at any point to a lower value, because, by assumption,
𝑎 is a champion.

(2) Since the number that arrives to cover on the upper level the
original 𝑎 after the 6th rotation is still 𝑎, it then follows that all
numbers on circle 𝒞 (𝜌) are equal.

(3) Again, since 𝑎 is a champion, the only possibility for this to hap-
pen is when all the numbers on the smaller adjacent hexagonal
circle 𝒞 (𝜌 − 1) are 0’s.

(4) Further, it follows that all the numbers on 𝒞 (𝜌 − 2) are also
only 0’s.

By iterating, it follows from the above remark that if 𝑎 is a cham-
pion, then all the numbers on the circle 𝒞 (𝜌) are equal to 𝑎 and all
the numbers in the interior of 𝒞 (𝜌) are 0’s. Therefore, there is no other
champion in u besides 𝑎, and this concludes the proof of Theorem 4.

5.2. Trial of sequences with a single champion

The necessary condition for sequences to have at most one cham-
pion in order for the helicoids they generate to have just one distinct
layer proves to be insufficient. In fact, there may exist one-champion
sequences that generate helicoids with a record number of distinct
layers In Figs. 5–8, the helicoids generated by different finite inte-
ger sequences are shown, each having a single champion, their first
element. To use comparable units in reasonably sized images that
can be displayed in print, we have chosen decreasing sequences u

of 20 or 30 integers, all followed by the same sequence of 10 random
bits: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0. Distinct numbers are represented by different
colors. Under each helicoid, the generating sequences of the partial
equilateral triangles, namely 𝛶 (0)(u), 𝛶 (1)(u),… , 𝛶 (6)(u), 𝛶 (0)(u), can be
seen stacked on top of each other, making it easier to compare and
determine if the helicoid has multiple distinct sheets on distinct levels.

One finds that the results are mixed. There are sequences that

generate helicoids with one distinct level, as the one in Fig. 5, or with
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Fig. 6. The first level of the helicoid generated by u′ given by the first twenty 4th positive powers (left) and the fourth level of the helicoid (out of the nine distinct it has) generated
y u′′ given by the first twenty 5th positive powers (right), both in decreasing order, and then followed each by the same sequence of ten bits: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0. Distinct
ntegers are shown in different colors. Under the represented levels, the corresponding generating sequences of their intermediate triangles are shown: 𝛶 (0)(u′), 𝛶 (1)(u′),… , 𝛶 (6)(u′)
left), and 𝛶 (18)(u′′), 𝛶 (19)(u′′),… , 𝛶 (24)(u′′) (right, numbered also from 0 to 6). In the representation on the left, u′ = 𝛶 (0)(u′) is covered by 𝛶 (6)(u′) and in the representation on
he right 𝛶 (18)(u′′) is covered by 𝛶 (24)(u′′), but their elements can be seen for comparison on the last two rows of the maps underneath.
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xactly two distinct levels, as those in Fig. 6 (left), Figs. 7 and 8 (right).
here are also helicoids with more distinct levels, like the one that is
enerated by 5th powers in Fig. 6 (right), where is shown level four
ut of the nine distinct ones it has, or the one in Fig. 8 (left), which has
our distinct levels. The lead sequence, also used in reversed order in
ig. 8, is 0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31,… , the sequence that starts
ith 0 and is generated by the greedy algorithm so that it contains no
rithmetic progressions of length 3. Its elements are also characterized
s being sums of distinct powers of 3 or as having only 0 and 1 in
heir base-3 representation [21, A005836]. The longer instances with
he first 𝑁 = 314, 315,… , 320 elements in reversed order followed by
he above sequence of ten bits generate helicoids with 84 distinct layers,
he cycle having just one element.

A complete characterization of the integer sequences based on the
umber of distinct levels that their associated helicoids have requires
urther investigation. For instance, it would be interesting to know if
here are helicoids with an arbitrarily large number of distinct levels.

promising candidate to try seems to be a series of length-balanced
ecreasing sequences of powers. For instance, to add to the points
lready mentioned, we note that the sequence of just ten 9th powers in
ecreasing order followed by 0, 1, 0, 0, 0, 0, 0, 1, 0, 0 produces a helicoid
ith 262 distinct layers, of which 𝑃 = 198 are in a precycle and 𝐶 = 64
re in an endless repeated cycle. And the analogues with 10th and 11th
owers have 𝑃 +𝐶 = 140+128 = 268 and 𝑃 +𝐶 = 512+32 = 544 distinct
ayers, respectively.

uestion. Is there a sequence of finite sequences of positive integers
hat generates helicoids with an unlimited number of distinct levels?

. Proof of Theorem 5

Let us start by noting that it is sufficient to prove the belonging
elationship in 5 for proportions 𝑅w(𝑘), as it will also imply the one
or 𝑅e(𝑘). This follows from the rotation–reflection symmetry, as we
ave seen in the discussion Section 5, and also by following the same
10
easoning below with the sequences in

= u(𝑁) = (𝑎0,… , 𝑎𝑁−1) ∈ 0(𝑁)

ndexed from right to left instead of left to right, which obviously would
ead to the same conclusion, this time for 𝑅e(𝑘).

Let 𝜀 ∈ (0, 1∕2) be fixed. We first prove that there exists an
nteger 𝑁𝜀 such that if 𝑁 ≥ 𝑁𝜀 then

1
2𝑁

#
{

u ∈ 0(𝑁) ∶ 1
𝑁
#
{

0 ≤ 𝑗 ≤ 𝑁 − 1 ∶ 𝑎𝑗 = 1
}

∈
[

1∕2 − 𝜀, 1∕2 + 𝜀
]

}

≥ 1 − 𝜀.

(18)

For each u ∈ 0(𝑁), denote the set of indices with components equal
to 1 by

𝑆(u) ∶=
{

0 ≤ 𝑗 ≤ 𝑁 − 1 ∶ 𝑎𝑗 = 1
}

⊂ {0, 1,… , 𝑁 − 1}.

Then the left-hand side of inequality (18) can be rewritten as
1
2𝑁

#
{

u ∈ 0(𝑁) ∶ 1
𝑁
#𝑆(u) ∈

[

1∕2 − 𝜀, 1∕2 + 𝜀
]

}

1
2𝑁

#
{

u ∈ 0(𝑁) ∶ 𝑁
2

−𝑁𝜀 ≤ #𝑆(u) ≤ 𝑁
2

+𝑁𝜀
}

= 1
2𝑁

∑

𝑁
2 −𝑁𝜀≤𝑙≤𝑁

2 +𝑁𝜀

#
{

u ∈ 0(𝑁) ∶ #𝑆(u) = 𝑙
}

.

oticing in passing that the unrestricted sum of all the cardinalities in
he last sum is 2𝑁 , the inequality (18) that we want to prove is

1
2𝑁

∑

𝑁
2 −𝜀𝑁≤𝑙≤𝑁

2 +𝜀𝑁

(

𝑁
𝑙

)

≥ 1 − 𝜀

for sufficiently large 𝑁 . For this, it is sufficient to prove that in the
sum above, the missed tails at the beginning and at the end, which are
equal, due to the symmetry of the binomial coefficients, are small, that
is,

2
∑

(

𝑁
)

≤ 𝜀2𝑁 ,

0≤𝑙≤𝑀 𝑙
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Fig. 7. The basic levels of two helicoids that have identical layers from the second level on. They are generated by u given by the first twenty primes (left) and the first
twenty square-primes (right) in decreasing order, followed by the sequence of ten bits: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0. Distinct integers are shown in different colors. Under the layers, the
corresponding generating sequences 𝛶 (0)(u), 𝛶 (1)(u),… , 𝛶 (6)(u) of the intermediate triangles are shown. In both images, the initial u = 𝛶 (0)(u) is covered by 𝛶 (6)(u), but they can
e seen for comparison on the accompanying maps.
Fig. 8. The hexagons on the base level of two helicoids generated by the sequence u of non-negative integers whose base-3 representation contains no 2 [21, A005836]. The
mage on the left uses 20 and the image on the right 30 elements of the sequence in decreasing order, both followed by the same ten bits: 0, 1, 0, 0, 0, 0, 0, 1, 0, 0. Distinct integers
re shown in different colors. The helicoids have four and two distinct levels, respectively. Under the hexagons, the corresponding generating sequences 𝛶 (0)(u), 𝛶 (1)(u),… , 𝛶 (6)(u)

of the intermediate triangles are shown. In both images, the initial generators u = 𝛶 (0)(u) are covered by 𝛶 (6)(u), but they can be seen for comparison in the accompanying maps.
here we denoted 𝑀 ∶=
⌊𝑁

2 − 𝜀𝑁
⌋

. Since the binomial coefficients
are increasing in the range of summation above, we replace the sum
with a trivial upper bound and reformulate our object as the following
convenient statement that is sufficient to be proven:

(𝑀 + 1)
(

𝑁
)

≤ 𝜀2𝑁−1 , (19)
11

𝑀

for sufficiently large 𝑁 . To estimate the binomial coefficients we use
Stirling’s approximation formula for factorials given by Robbins [22]
in the form of two tight upper and lower bounds:

√

2𝜋𝑛
( 𝑛)𝑛

𝑒
1

12𝑛+1 < 𝑛! <
√

2𝜋𝑛
( 𝑛)𝑛

𝑒
1
12𝑛 .
𝑒 𝑒
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Then the left-hand side of (19) is

(𝑀 + 1)
(

𝑁
𝑀

)

= (𝑀 + 1) 𝑁!
𝑀!(𝑁 −𝑀)!

< 𝑎 𝑁𝑁+1∕2

𝑀𝑀−1∕2(𝑁 −𝑀)𝑁−𝑀+1∕2
,

(20)

for a positive constant 𝑎 < 1∕200 if 𝑁 > 100. Here, we change the
variable 𝑀 into 𝑅, where 𝑅 ∶= 𝑁∕2 − 𝑀 . Note that since 𝑀 =
𝑁∕2 − 𝜀𝑁 + 𝜃, where |𝜃| ≤ 1, it follows that

𝑅 = 𝜀𝑁 + 𝑂(1). (21)

Then the new form of the inequality (19) that we want to prove for 𝑁
sufficiently large is

𝑎 ⋅ 𝑁𝑁+1∕2
(

𝑁
2 − 𝑅

)𝑁∕2−𝑅−1∕2(𝑁
2 + 𝑅

)𝑁∕2+𝑅+1∕2
≤ 𝜀2𝑁−1,

hich can still be rearranged further into the more convenient form

𝑎 ⋅ 𝑁1∕2
(

1 − 2𝑅
𝑁

)𝑁∕2−𝑅−1∕2(
1 + 2𝑅

𝑁

)𝑁∕2+𝑅+1∕2
≤ 𝜀. (22)

et us note that here 𝑟 ∶= 2𝑅∕𝑁 is small because (21) implies

= 2𝑅
𝑁

=
2𝜀𝑁 + 𝑂(1)

𝑁
= 2𝜀 + 𝑂

( 1
𝑁

)

. (23)

ntroducing the new variable 𝑟 in (22), we find that it is equivalent with

𝑎 ⋅ 𝑁1∕2
(

1 − 𝑟2
)𝑁∕2(1 − 𝑟)−𝑅−1∕2(1 + 𝑟)𝑅+1∕2

≤ 𝜀. (24)

It remains to show that here the denominator has an order of magni-
tude higher than that of the numerator. To do this, we evaluate the
logarithm of the denominator, which is

= log
(

(

1 − 𝑟2
)𝑁∕2(1 − 𝑟)−𝑅−1∕2(1 + 𝑟)𝑅+1∕2

)

=𝑁
2
log

(

1 − 𝑟2
)

+
(

𝑅 + 1
2

)

(

log(1 + 𝑟) − log(1 − 𝑟)
)

.

hen, by taking into account the size of 𝑅 and 𝑟 from (21) and (23),
nd particularly the fact that 𝑟 is small, we replace the logarithms with
heir power series approximations and see that the logarithm of the
enominator in (24) is further equal to
𝑁
2
(

−𝑟2 + 𝑂(𝑟4)
)

+
(

𝑅 + 1
2

)(

2𝑟 + 2𝑟3
3

+ 𝑂(𝑟5)
)

=𝑁
∞
∑

𝑘=1
22𝑘

( 1
2𝑘 − 1

− 1
2𝑘

)

𝜀2𝑘 + 𝑂(𝜀).
(25)

t then follows that there exists an absolute constant 𝑐 > 0 such that (24)
s satisfied for sufficiently large 𝑁 if
log𝑁
𝑐𝜀2𝑁

< 𝑁1∕2

𝑐𝜀2𝑁
= 1

𝑐𝜀2𝑁1∕2
< 𝜀.

And, in order for this last requirement to be fulfilled, it is enough to
take 𝑁 > 𝑁𝜀, with 𝑁𝜀 ∶= max

{

100,
⌊ 1
𝑐𝜀6

⌋}

.
To conclude the proof of Theorem 5 for just the left edge of

he (P-G) triangle, we apply the operator 𝛶 on the generating se-
quences u. Since we know by Theorems 2 and 3 that 𝛶 is an involution,
therefore also a bijection, it follows from the above argument that,
aside from an exceptional set of the same size as that of u’s, on
the western edge, the sequences w0 contain approximately the same
number of 0’s and 1’s as well.

Then, in the same way, the same conclusion can be drawn for the
next segments w1,w2,… , which are parallel to w0, by reasoning with
the partial subsequences of u that ignore a few starting elements. In the
following, we need to quantify precisely for how many segments we can
be sure that the almost-equal-proportions-result actually holds for.

Let 𝐾 be the number of the rays w0,w1,… ,w𝐾−1 in question. The
size of 𝐾 that we can afford will be determined later. These rays are
12
generated by the partial subsequences of u that are given by u𝑘 =
𝑘(𝑁) ∶= (𝑎𝑘, 𝑎𝑘+1,… , 𝑎𝑁−1) for 0 ≤ 𝑘 ≤ 𝐾 −1. Note that the number of

the sequences u𝑘(𝑁) is 2𝑁−𝑘 for any fixed 𝑘 and 𝑁 .
Let 𝜀 ∈ (0, 1∕2) be fixed and let 𝑘, 𝐾 be such that 0 ≤ 𝑘 ≤ 𝐾 − 1 < 𝑁

or some large 𝑁 . In order to fulfill the additional requirements on the
ultiple rays, we choose a larger value for the term on the right side

f the inequality (18), which means, a narrower target. Thus, since the
ize of u𝑘 is 𝑁 − 𝑘, its counterpart form becomes:

1
2𝑁−𝑘 #

{

u ∈ 0(𝑁 − 𝑘) ∶
#
{

𝑘 ≤ 𝑗 ≤ 𝑁 − 1 ∶ 𝑎𝑗 = 1
}

𝑁 − 𝑘
∈
[

1∕2 − 𝜀, 1∕2 + 𝜀
]

}

≥ 1 − 𝜀
𝐾
.

(26)

Let us note that this would suffice to completely prove Theorem 5.
Indeed, let 𝑁 (𝑘) be the part of the exceptional set 𝑁 in the statement
of Theorem 5 that corresponds to the sequences u that do not meet the
requirement (7) of approximately-equal-proportion of 1’s and 0’s for
ay w𝑘. Then, the exceptional sets are smaller and smaller in size as 𝑘
ncreases, and despite the fact that the sets 𝑁 (𝑘) are not disjoint, we

have

(𝑁) =
𝐾−1
⋃

𝑘=0
𝑁 (𝑘) and #(𝑁) ≤

𝐾−1
∑

𝑘=0
#𝑁 (𝑘). (27)

We know, via the one-to-one correspondence 𝑇 from Theorem 3,
hat the generating sequence u and the left edge w of any typical (P-G)
riangle of zeros and ones are permutations of one another, so that, the
ardinality of the analogous exceptional sets of sequences that do not
ulfill the approximately equal number of 1’s and 0’s condition is the
ame.

Therefore, once proven (26), using the inequality in (27), for the
xceptional set (𝑁) in the statement of Theorem 5, we find that

1
2𝑁

#(𝑁) ≤ 1
2𝑁

𝐾−1
∑

𝑘=0
#𝑁 (𝑘) ≤

𝐾−1
∑

𝑘=0

1
2𝑁−𝑘 #𝑁 (𝑘) ≤ 𝐾 ⋅

𝜀
𝐾

= 𝜀,

that is, #(𝑁) ≤ 𝜀2𝑁 , as needed. Then we only have to prove (26),
ndicating the range of 𝑁 in which it holds, and how large we are
llowed to take 𝐾.

Following the same steps as before in arguing relation (18), by
ewriting the cardinality of the sets inside (26), and then continuing by
implifying the resulting expression, the inequality on the tails becomes

1
2𝑁−𝑘−1

∑

0≤𝑙≤𝑀

(

𝑁 − 𝑘
𝑙

)

≤ 𝜀
𝐾
,

where 𝑀 =
⌊𝑁−𝐾

2 −𝜀(𝑁−𝐾)
⌋

. It then follows that it suffices to see that
or large 𝑁 we have

𝑀 + 1)
(

𝑁
𝑀

)

≤ 𝜀
𝐾
2𝑁−1−𝐾 , (28)

he strongest condition that, once met, all the corresponding 𝑘 inequal-
ties will also be satisfied for 0 ≤ 𝑘 ≤ 𝐾 − 1.

Further, the estimates of the binomial coefficients is done as before,
nd we arrive to ponder the inequality

2𝐾𝑁1∕2
(

1 − 𝑟2
)𝑁∕2(1 − 𝑟)−𝑅−1∕2(1 + 𝑟)𝑅+1∕2

≤ 𝜀
𝐴𝐾

, (29)

for some constant 𝐴 > 0 that is independent of 𝜖,𝑁 and 𝐾. Here 𝑟 is
mall and 𝑅 captures the new 𝑀 from (28). Precisely, as in (21) and
23), we have:

= 2𝜀 + 𝑂
( 1
𝑁

)

and 𝑅 = 𝜀𝑁 + 𝑂(1). (30)

The logarithm of the numerator on the left-hand side of (29) is

𝐾 log 2 + 1 log𝑁 (31)

2
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B
𝑐

𝑐

B

and, using (30), the logarithm of the denominator is the same as in (25):

𝑁
∞
∑

𝑘=1

22𝑘−1
𝑘(2𝑘 − 1)

𝜀2𝑘 + 𝑂(1) > 𝑐0𝜀
2𝑁, (32)

for some absolute constant 𝑐0 > 0.
As a consequence, using (31) and (32), we find that inequality (29)

holds true for sufficiently large 𝑁 as long as the following condition is
also verified.

𝑐0𝜀
2𝑁 −𝐾 log 2 − 1

2
log𝑁 > log 𝐾

𝜀
ut, for this to happen, it is necessary to exist two absolute constants
1, 𝑐2 > 0 such that

1𝜀
2𝑁 > 𝐾 and 𝑐2𝜀

2𝑁 > log𝐾 − log 𝜀.

oth these conditions are fulfilled if we take 𝐾 = 𝛿𝜀𝑁 , where 𝛿 = 𝛿𝜀 > 0
is a suitable small constant that depends only on 𝜀 and the absolute
constants above, and 𝑁 is larger than a threshold 𝑁𝜀,𝛿 that relies on the
same dependencies and additionally on the choice of 𝛿. This concludes
the proof of Theorem 5.
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