
ON THE S’(K) FUNCTION

RAGHAVENDRA N. BHAT

1. Introduction

In this paper, we explore a summation function on natural numbers, namely
S ′(k), defined as follows:

S ′(k) =
2k−1∑
h=1

2k−1∑
j=1

(−1)j+1+[hj/k]

Here, [hj/k] denotes the greatest integer lesser than hj/k. For simplicity of nota-
tion, we also define inner sums:

S ′(k, h) =
2k−1∑
j=1

(−1)j+1+[hj/k]

S ′(k, h, j) = (−1)j+1+[hj/k]

We prove some results, giving simpler formulas to compute S ′(k) for any odd
k and then make some conjectures about even k. Finally, we explore a smaller
summation:

S(k) =
k−1∑
h=1

k−1∑
j=1

(−1)j+1+[hj/k]

Below are the first 20 values of (k, S ′(k)):

(1,−1),(2,−1), (3,−5), (4,−1), (5,−9), (6,−9), (7,−13), (8,−1), (9,−25), (10,−17),
(11,−21), (12,−17), (13,−25), (14,−25), (15,−61), (16,−1), (17,−33), (18,−49),
(19,−37), (20,−33).

Date: August 2023.
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2. Results on S’(k), k odd

We provide a general formula for S ′(k), when k odd, that involves a single
summation involving h, as opposed to the original double sum involving h and j.
Moreover, our formula does not involve sums over powers of −1.

Theorem 1.

S ′(k) = 2k − 1−
∑

1≤h≤2k−1
h odd

2 · gcd(k, h), when k odd.

The above result can be further simplified using the well-known Euler Phi func-
tion, as follows:

S ′(k) = 2k − 1− 2
∑
d|k

d ·#{h : gcd(k, h) = d : 1 ≤ h ≤ 2k − 1 odd }

⇒ S ′(k) = 2k − 1− 2
∑
d|k

d ·#
{
h : gcd

(
k

d
,
h

d

)
= 1 : 1 ≤ h ≤ 2k − 1 odd

}
Since we have gcd(k, h) = gcd(k, h− k), we can rewrite the sum as

S ′(k) = 2k− 1− 2
∑
d|k

d ·#
{
m : gcd

(
k

d
,m

)
= 1 : 1 ≤ m ≤

⌊
2k − 1

d

⌋
: m odd

}

⇒ S ′(k) = 2k − 1− 2
∑
d|k

d · ϕ
(
k

d

)
.

We now prove the theorem with the help of a few, useful lemmas.

Lemma 1.1. S ′(k, h) = 1 for k odd and h even.

Proof. By definition,

S ′(k, h) =
2k−1∑
j=1

(−1)j+1+[hj/k] =
2k−1∑
j=1

S ′(k, h, j)

For all 1 ≤ j < k,

S ′(k, h, j + k) = (−1)j+k+1+[h(j+k)/k] = (−1)j+[hj/k] = −S ′(k, h, j).

We have
S ′(k, h, k) = (−1)k+1+[hk/k] = (−1)k+1+h = 1.
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Thus,

S ′(k, h) =
k−1∑
j=1

(−1)j+1+[hj/k] +
2k−1∑
j=k+1

(−1)j+1+[hj/k] + S ′(k, h, k) = 1.

□

Lemma 1.2. For k odd and h odd, we have

S ′(k, h) =
∑

1≤j≤2k−1
hj
k
∈Z

(−1)

Proof. Consider any j with [hj/k] ̸= hj/k. Then,

S ′(k, h, 2k − j) = (−1)2k−j+1+[h(2k−j)/k] = (−1)2k−j+1+2h+[−hj/k]

= (−1)−j−[hj/k] = (−1)j+[hj/k] = −S ′(k, h, j).

Thus, within the summand of S ′(k, h), each S ′(k, h, j) cancels out S ′(k, h, 2k− j),
when [hj/k] ̸= hj/k.

On the other hand, if [hj/k] = hj/k,

S ′(k, h, 2k − j) = (−1)2k−j+1+[h(2k−j)/k] = (−1)2k−j+1+2h+[−hj/k]

= (−1)−j+1−[hj/k] = S ′(k, h, j).

Therefore, we conclude

S ′(k, h) =
∑

1≤h≤2k−1

S ′(k, h, j) =
∑

1≤j≤2k−1
[hj/k]=hj/k

(−1)j+1+hj/k.

It is easy to see that hj/k matches the parity of j when [hj/k] = hj/k since h
and k both are odd. This gives

(−1)j+1+hj/k = (−1).

Thus,

S ′(k, h) =
∑

1≤j≤2k−1
[hj/k]=hj/k

(−1)j+1+hj/k =
∑

1≤j≤2k−1
hj
k
∈Z

(−1).

□

Lemma 1.3. S ′(k, h) = 1− 2 · gcd(k, h) for k odd and h odd.
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Proof. From 1.2, we have that

S ′(k, h) =
∑

1≤j≤2k−1
hj
k
∈Z

(−1).

Let d = gcd(k, h). The least common multiple of k and h can be expressed as

lcm(k, h) =
k · h
d

.

Thus, we have
hj

k
∈ Z ⇔ j =

n · k
d

for some n ∈ N.
Since 1 ≤ j ≤ 2k − 1, we have 1 ≤ n < 2d, because n = 2d gives j = 2k. Thus,

S ′(k, h) =
∑

1≤n<2d

S ′(k, h,
nk

d
) =

∑
1≤n<2d

(−1) = −(2d− 1) = 1− 2 · gcd(k, h).

□

Proof. of Theorem 1: From 1.1, 1.2, 1.3 we have:

S ′(k) =
∑

1≤h≤2k−1
h even

1 +
∑

1≤h≤2k−1
h odd

1− 2 · gcd(k, h), when k odd.

We combine the constants together to obtain:

S ′(k) = 2k − 1−
∑

1≤h≤2k−1
h odd

2 · gcd(k, h), when k odd.

This completes the proof of the theorem. □

As immediate consequences of the theorem, we get the following nice results:

Corollary 1.1. S ′(p) = 1− 2p ∀p ∈ P.
Proof. From 1, we have

S ′(p) = 2p− 1−
∑

1≤h≤2p−1
h odd

2 · gcd(p, h).

Since p is prime, gcd(p, h) = 1 for all h not a multiple of p. In the interval of
interest, there are p odd numbers and the only multiple of p is p itself. Thus,

S ′(p) = 2p− 1− 2 · (gcd(p, p))− 2 · (p− 1) = 2p− 1− 2p− 2p+ 2 = 1− 2p.
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□

Corollary 1.2. S ′(pq) = 4(p+ q)− 6pq − 3 for any p, q ∈ P

Proof. From 1, we have

S ′(pq) = 2pq − 1−
∑

1≤h≤2pq−1
h odd

2 · gcd(pq, h).

We have q odd multiples of p, each having a gcd of p with pq and p odd multiples
of q, each having a gcd of q with pq, with pq being the overlap. Thus, we have
p− 1 odd multiples of q, q − 1 odd multiples of p and pq as the unique numbers
that have a common factor greater than 1 with pq. In the interval of interest,
there are pq odd numbers. Thus,

S ′(pq) = 2pq − 1− 2(q − 1)p− 2(p− 1)q − 2pq − 2(pq − q + 1− p+ 1− 1).

= 2pq − 1− 2pq + 2p− 2pq + 2q − 2pq − 2pq + 2q − 2 + 2p− 2 + 2.

= 4(p+ q)− 6pq − 3.

□

3. Results on S’(k), k even

We will now give some results for S ′(k) when k is even and claim some conjec-
tures based on computations.

Theorem 2. S ′(2n) = −1 for all natural numbers n.

Lemma 2.1. S ′(k, k) = 1− 2k.

Proof. S ′(k, k) =
∑2k−1

j=1 (−1)2j+1 = −1 · (2k − 1) = 1− 2k. □

Proof. of Theorem 2: We verify the statement of the theorem for k = 1 and k = 2
by brute force. We will prove the theorem for k = 2n with n ≥ 2. Consider any
S ′(k, h) with h ̸= k, 1 ≤ h ≤ 2k − 1 and k = 2n for some n. We will show that
this is always 1.

S ′(2n, h) =
2n+1−1∑
j=1

(−1)j+1+[hj/2n] =
2n+1−1∑
j=1

(−1)j+1 · (−1)[hj/2
n]
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Claim:
2n+1∑
j=1

(−1)j+1+[hj/2n] = 0

for any h.

Case 1: h is odd. We claim that for 1 ≤ j ≤ k,

(−1)j+1+[hj/k] = −(−1)(j+k)+1+[h(j+k)/k].

Proof:

(−1)(j+k)+1+[h(j+k)/k] = (−1)(j+k)+1+[hj/k+h] = (−1)(j+k)+1+[hj/k]+h

= −(−1)j+1+[hj/k] since h is odd and k is even.

This completes the proof for h odd.

Case 2: h is even. Clearly, following the arguments from case 1:

(−1)j+1+[hj/k] = (−1)(j+k)+1+[h(j+k)/k].

Thus, our problem reduces to showing

2n∑
j=1

(−1)j+1+[hj/2n] = 0 i.e. S(k, h) + S(k, h, k) = 0.

Recall that the single summation in S(k, h) involves j going from 1 to 2k − 1.
Thus, we add the additional S(k, h, k) to allow the summation to include k = 2n.
Since h and k are both even,

S(k, h, k) = (−1)k+1+[hk/k] = (−1)k+1+h = −1.

We should now prove that S(k, h) = 1 when k = 2n, h < k, and h even. Firstly,
assume h/2 is odd.

S(k, h) =
k−1∑
j=1

(−1)j+1+[hj/k] =
2n−1∑
j=1

(−1)j+1+[hj/2n]

When j = k/2,

(−1)k/2+1+[h·2n/2n+1] = (−1)k/2+1+h/2 = (−1)1+h/2 = 1.
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Again, for 1 ≤ j < k/2 we have

S(k, h, j) = (−1)j+1+[hj/k] = −(−1)j+k/2+1+[h(j+k/2)/k] = −S(k, h, j + k/2).

Thus, S(k, h) = 1 as the S(k, h, j) pairs around j = k/2 cancel out with the
corresponding S(k, h, j + k/2) pairs in the summation.

If h/2 is even, the same argument continues inductively. At j = k/2,

(−1)k/2+1+[h·2n/2n+1] = −1.

On either side, the partial sums add up to 1, by induction, and are duplicates of
one another. Within each partial sum, the same reduction continues inductively,
until one arrives at an odd number at which point the 1 becomes the pivot, hence
cancelling the terms around it. More clearly, if h/2m is odd, j = k/2m becomes a
pivot. Thus, one can look at the final contribution as 1 + (−1) + 1 = 1 where the
two 1s come from the the left and right partial sums inductively.

Thus, S(k, h) = 1 ⇒
∑2n+1

j=1 (−1)j+1+[hj/2n] = 1 + S(k, h, k) = 1 + (−1) = 0.

At j = 2n+1, we have (−1)j+1+[hj/2n] = (−1)2
n+1+1+2h = −1. Thus,

S ′(k, h) =
2n+1−1∑
j=1

(−1)j+1+[hj/2n] = 1

We have a total of 2k−2 choices for h, each contributing 1 to the S ′(k) sum. The
S ′(k, k) contributes 1− 2k. Thus, for all k that are powers of 2,

S ′(k) = 2k − 2 + 1− 2k = −1.

□

Computations show that the general formula for S ′(k), when k even, does not
differ much from 1.

Conjecture 1.

S ′(k) = 2k − 1−
∑

1≤h≤2k−1
h≡2 mod 4

2 · gcd(k, h), when k even.

We are able to prove part of the result, with the following lemma.

Lemma 1.1. S ′(k, h) = 1 for k even and h odd.
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Proof.

S ′(k, h) =
2k−1∑
j=1

(−1)j+1+[hj/k] =
2k−1∑
j=1

S ′(k, h, j)

For all 1 ≤ j < k,

S ′(k, h, j + k) = (−1)j+k+1+[h(j+k)/k] = (−1)j+[hj/k] = −S ′(k, h, j).

We have
S ′(k, h, k) = (−1)k+1+[hk/k] = (−1)k+1+h = 1.

Thus,

S ′(k, h) =
k−1∑
j=1

(−1)j+1+[hj/k] +
2k−1∑
j=k+1

(−1)j+1+[hj/k] + S ′(k, h, k) = 1.

□

4. Some notes on S(k)

We now provide some elementary results on a shorter sum,

S(k) =
k−1∑
h=1

k−1∑
j=1

(−1)j+1+[hj/k].

Theorem 3. S(k) and k have opposite parities.

Proof. Recall two sub-functions

S(k, h) =
k−1∑
j=1

(−1)j+1+[hj/k]

S(k, h, j) = (−1)j+1+[hj/k]

In other words,

S(k) =
k−1∑
h=1

S(k, h) and S(k, h) =
k−1∑
j=1

S(k, h, j).

Without loss of generality, assume k to be odd. Thus, k − 1 is even. For each
h between 0 and k, S(k, h) involves a summation over k − 1 different values of
S(k, h, j). Since each of these values is either −1 or 1, we have a summation over
an even number of−1s and 1s. We conclude that S(k, h) is even for all h if k is odd.
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Thus, S(k) =
∑k−1

h=1 S(k, h), which is essentially a summation over even num-
bers, is even.
The symmetrical argument holds true when k is even, where we have each of
the S(k, h) equal an odd number. There are k − 1 such pairs and we have the
proof. □

Corollary 3.1. (3,2) is the only tuple where both k and S(k) are prime.

Theorem 4. S(k, h) = h when h = k − 1.

Proof. Recall that

S(k, h) =
k−1∑
j=1

(−1)j+1+[hj/k] and S(k, h, j) = (−1)j+1+[hj/k].

If h = k − 1, for each value of j, we have that [hj/k] = [(k − 1) · j/k] = j − 1.

Thus, S(k, h, j) = (−1)j+1+j−1 = 1 for all h. This completes the proof as there
are a total of k − 1 different values of h. □

Theorem 5. If k ≡ 1 mod 4 and k prime, then S(k) ≡ 0 mod 4.

Lemma 5.1. S(k, h) ≡ S(k, k − h) mod 4 for all 1 ≤ h ≤ k − 1.

Proof. We compare individual values of S(k, h, j) and S(k, k − h, j).

S(k, h, j) = (−1)j+1+[hj/k] and S(k, k − h, j) = (−1)j+1+[(k−h)·j/k].
Since the (−1)j+1 is a common factor for both, we just compare the [hj/k], [(k −
h) · j/k] exponents.

Case 1: Suppose j is odd. Then we have

(−1)[(k−h)·j/k] = (−1)[j−hj/k] = (−1)[−hj/k] · (−1)j = (−1)[−hj/k] · (−1)

Case 1.1: If hj/k ∈ Z we have

(−1)[−hj/k] · (−1) = (−1)[hj/k]
(−1)

· (−1) = (−1)[hj/k] · (−1)

and hence not equal to (−1)[hj/k].



10 RAGHAVENDRA N. BHAT

Case 1.2: If hj/k ̸∈ Z we have

(−1)[−hj/k] · (−1) = (−1)(−1)·[hj/k]−1 · (−1) = (−1)(−1)·[hj/k]

and hence equal to (−1)[hj/k].

Case 2: Suppose j is even. Then we have

(−1)[(k−h)·j/k] = (−1)[j−hj/k] = (−1)[−hj/k] · (−1)j = (−1)[−hj/k]

Case 2.1: If hj/k ∈ Z we have

(−1)[−hj/k] = (−1)[hj/k]
(−1)

and hence equal to (−1)[hj/k].

Case 2.2: If hj/k ̸∈ Z we have

(−1)[−hj/k] = (−1)(−1)·[hj/k]−1

and hence not equal to (−1)[hj/k].

Note that since k is prime, lcm(k, h) = k · h. Thus, hj/k ̸∈ Z ∀ 1 ≤ h, j ≤ k − 1.

Thus we have
S(k, h, j) = S(k, k − h, j) when j is odd.

S(k, h, j) ̸= S(k, k − h, j) when j is even.

However, k ≡ 1 mod 4. Thus, there are an even number of even values of j
between 1 and k − 1. For each such j,

|S(k, h, j)− S(k, k − h, j)| = 2.

Thus
∑

j even

|S(k, h, j)− S(k, k − h, j)| ≡ 0 mod 4.

In conclusion, for any h

S(k, h)− S(k, k − h) =
∑

1≤j≤k−1

S(k, h, j)−
∑

1≤j≤k−1

S(k, k − h, j)

=
∑
j odd

S(k, h, j)−
∑
j odd

S(k, k − h, j) +
∑

j even

S(k, h, j)−
∑

j even

S(k, k − h, j)

≡ 0 mod 4
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This completes the proof of the lemma. □

Proof. of Theorem 5. Firstly, note that S(k, h) =
∑k−1

j=1 S(k, h, j). Since k − 1

is even and S(k, h, j) ∈ {1,−1} for any h, j, we have that S(k, h) is even for all
1 ≤ h ≤ k − 1.

By 5.1, we have that S(k, h) + S(k, k − h) ≡ 0 mod 4 for all h. Since there are
a total of k−1

2
pairs of {S(k, h), S(k, k − h)}, we have

S(k) =
k−1∑
h=1

S(k, h) ≡ 0 mod 4.

□

Theorem 6. If k ≡ 3 mod 4 and k prime, S(k) ≡ 2 mod 4.

Proof. The proof is the same as 5, except that S(k, h) ≡ S(k, k − h) + 2 mod 4
for all h. This is due to a slight change in Case 2.2 of 5.1, where we now have an
odd number of even j values.

Thus
∑

j even

|S(k, h, j)− S(k, k − h, j)| ≡ 2 mod 4.

Thus, S(k) =
∑

1≤h≤ k−1
2

S(k, h) + S(k, k − h) ≡ 2 mod 4, again since k − 1 is

odd. □

Conjecture 2. S(k) values are distributed equally modulo 4.

Conjecture 3. S(p) is always positive for p prime.

A partial result of this conjecture can be gotten from the following lemma,
which is a consequence of 1.

Lemma 3.1. S(p, h) = 0 for h odd.

Proof. With a slight modification to the proof of 1.3, we get that S(k, h) = 1 −
gcd(k, h) when both k, h are odd. Thus, S(p, h) = 0. □

Thus, 3 reduces to showing that
∑

h even S(p, h) > 0, where 2 ≤ h ≤ p− 1.
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5. Some Illustrations

We now see a visual representation of 3. An ambitious claim would be the
following:

Conjecture 4. S(p) > np for all p prime, n ∈ N, with p sufficiently large,
depending on n.

Below is an image depicting the first 5000 values of S(k). We see that there are
quite a few negative values, as opposed to the values at primes only.
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